Structure of trans-Tetrachlorobis(dimethylphenylphosphine)technetium(IV)

By F. Albert Cotton,* Cynthia S. Day, \dagger Michael P. Diebold and Wieslaw J. Roth
Department of Chemistry and Laboratory for Molecular Structure and Bonding, Texas A\&M University, College Station, TX 77843, USA

(Received 10 July 1989; accepted 8 December 1989)

Abstract

TcCl}_{4}\left\{\mathrm{P}_{(} \mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right\}_{2}\right], \quad M_{r}=516 \cdot 1\), monoclinic, $P 2_{1} / c, a=9.692$ (2), $b=13.746$ (3), $c=$ 8.339 (2) $\AA, \beta=106.56$ (2) ${ }^{\circ}, V=1064 \cdot 9$ (5) $\AA^{3}, Z=$ $2, \quad D_{x}=1.61 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.7107 \AA, \quad \mu=$ $13 \cdot 1 \mathrm{~cm}^{-1}, F(000)=259, T=293 \mathrm{~K}, R=0.037$ for 1703 observed reflections. The mean $\mathrm{Tc}-\mathrm{Cl}$ distance is 2.324 (2) \AA and the Tc-P distance is 2.531 (1) \AA.

Introduction. Since an earlier study of $M \mathrm{Cl}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ compounds with $M=\mathrm{W}, \mathrm{Re}, \mathrm{Os}$ or Ir (Aslanov, Mason, Wheeler \& Whimp, 1970) revealed an interesting trend in $M-\mathrm{P}$ bond lengths through this horizontal series of compounds, we have studied the Tc compound to begin adding data on the vertical relationship.

Experimental. Crystals of this compound were provided by Professor A. Davison and Ms Anne Breikss, Department of Chemistry, Massachusetts Institute of Technology. A green crystal was mounted inside a thin-walled glass capillary and examined on a Nicolet four-circle autodiffractometer at Crystalytics Company, Lincoln, Nebraska. Crystal parameters and basic information on data collection and refinement are presented in Table 1. The structure was solved from a Patterson function followed by alternating cycles of full-matrix least-squares refinement and difference maps until all atoms had been found (Frenz, 1985). H atoms were omitted and all other atoms were refined with anisotropic displacement parameters.

Discussion. The positional parameters and equivalent thermal parameters are given in Table 2, and the bond distances and angles are listed in Table 3. Fig. 1 shows the structure and the atom numbering. \ddagger

* Author to whom correspondence should be addressed.
\dagger Crystalytics Company, 1701 Pleasant Hill Road, Lincoln, NE 68523, USA.
\ddagger Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52863 (11 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

0108-2701/90/091623-02\$03.00
$\left[\mathrm{TcCl}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ is presumably isomorphous with its previously reported Re analog although this cannot be asserted unequivocally because of the absence of crystal parameters in the earlier report. The mean $M-\mathrm{Cl}$ distances, $2 \cdot 324$ (2) and 2.331 (3) \AA, are not significantly different in the Tc and Re compounds, but the $\mathrm{Tc}-\mathrm{P}$ distance, $2 \cdot 531$ (1) \AA, is slightly longer than the $\mathrm{Re}-\mathrm{P}$ distance, $2 \cdot 505$ (3) \AA. This tendency of $M-\mathrm{P}$ distances to be greater for the lighter M atom is already

Table 1. Crystallographic data

Systematic absences	$\begin{aligned} & 0 k 0, k \neq 2 n \\ & h 0 l, l \neq 2 n \end{aligned}$
Crystal size (mm)	$0.20 \times 0.50 \times 0.55$
Orientation reflections	$15,2 \theta>20^{\circ}$
Scan speed in ω (${ }^{\circ} \mathrm{min}^{-1}$)	$6.0(2 \theta \leq 43.0) ; 3 \cdot 0(2 \theta \geq 43.0)$
Index ranges (data collection)	h: 0-12; k : 0-17; l-10-10
Scan method	ω
Scan width, background measurement	$1 \cdot 10^{\circ} ; \mathrm{bg} /$ scan time ratio $=0.50$
Data collection range (${ }^{\circ}$)	3-55
Monitor reflection, decay (stability)	6 reflections, no observed decay
Number of unique data, total with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$	$\begin{aligned} & 2441 \\ & 1703 \end{aligned}$
$R_{\text {int }}$	0.018
Number of parameters refined	106
Transmission factors (relative) max., min.	1.00, 0.73
R	0.037
$w R, w=1 / \sigma^{2}\left(\left\|F_{0}\right\|\right)$	0.049
Quality-of-fit indicator	1.379
Largest shift/e.s.d., final cycle	0.01
Largest peak ($\mathrm{e} \AA^{-3}$)	0.61

Table 2. Positional and equivalent isotropic displacement parameters for $\left[\mathrm{TcCl}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$

$B_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} B_{i j} a_{i} * a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Tc	0.000	0.000	0.000	2.360 (8)
$\mathrm{Cl}(1)$	0.1283 (1)	0.06232 (9)	-0.1738 (1)	3.64 (2)
$\mathrm{Cl}(2)$	0.1386 (1)	-0.14053 (9)	0.0373 (2)	3.92 (3)
P	0.1678 (1)	0.0697 (1)	0.2653 (1)	3.01 (2)
C(1)	0.3296 (5)	$0 \cdot 1264$ (4)	0.2403 (5)	2.98 (9)
C(2)	0.4245 (5)	0.0678 (4)	$0 \cdot 1852$ (7)	3.8 (1)
C(3)	0.5527 (6)	$0 \cdot 1078$ (5)	0.1677 (7)	4.6 (1)
C(4)	0.5812 (6)	$0 \cdot 2069$ (5)	$0 \cdot 2000$ (7)	$5 \cdot 1$ (1)
C(5)	0.4856 (7)	0.2638 (4)	$0 \cdot 2499$ (8)	5.6 (1)
C(6)	0.3594 (6)	$0 \cdot 2258$ (4)	$0 \cdot 2719$ (7)	4.5 (1)
C(7)	0.2337 (7)	-0.0227 (5)	0.4248 (7)	$5 \cdot 1$ (1)
$\mathrm{C}(8)$	0.0795 (6)	0.1602 (5)	0.3629 (7)	4.8 (1)

© 1990 International Union of Crystallography

Table 3. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{TcCl}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$
Numbers in parentheses are e.s.d.'s in the least-significant digits.

$\mathrm{Tc}-\mathrm{Cl}(1)$	$2.325(1)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.395(6)$
$\mathrm{Tc}-\mathrm{Cl}(2)$	$2.322(1)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.405(6)$
$\mathrm{Tc}-\mathrm{P}$	$2.531(1)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.404(6)$
$\mathrm{P}-\mathrm{C}(1)$	$1.815(4)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.402(8)$
$\mathrm{P}-\mathrm{C}(7)$	$1.817(5)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.365(8)$
$\mathrm{P}-\mathrm{C}(8)$	$1.827(5)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.389(8)$
$\mathrm{Cl}(1)-\mathrm{Tc}-\mathrm{Cl}(2)$	$89.91(4)$	$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(2)$	$117.5(3)$
$\mathrm{Cl}(1)-\mathrm{Tc}-\mathrm{P}$	$94.63(4)$	$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(6)$	$122.3(4)$
$\mathrm{Cl}(2)-\mathrm{Tc}-\mathrm{P}$	$89.69(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$120.2(4)$
$\mathrm{Tc}-\mathrm{P}-\mathrm{C}(1)$	$115 \cdot 0(1)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119 \cdot 7(5)$
$\mathrm{Tc}-\mathrm{P}-\mathrm{C}(7)$	$112.3(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.5(5)$
$\mathrm{Tc}-\mathrm{P}-\mathrm{C}(8)$	$112.4(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.1(5)$
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(7)$	$104 \cdot 5(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$121.6(5)$
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(8)$	$106.7(2)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$118.9(5)$
$\mathrm{C}(7)-\mathrm{P}-\mathrm{C}(8)$	$105 \cdot 1(3)$		

known in other compounds, such as corresponding pairs of $\mathrm{Mo}^{\mathrm{III}}$ and W^{II} complexes, where the differences are ca $0.02 \AA$ (Canich, Cotton, Daniels \& Lewis, 1987). An explanation for this does not appear to have been presented. If it were a relativistic effect it might have been expected to shorten all metal-ligand distances. It may be that the heavier atom has d orbitals better suited for π bonding to the P atom.

We thank the Robert A. Welch Foundation for support under grant No. A-494.

Fig. 1. ORTEP (Johnson, 1965) drawing of $\left[\mathrm{TCCl}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$. The ellipsoids are drawn at 40% probability level.

References

Aslanov, L., Mason, R., Wheeler, A. G. \& Whimp, P. O. (1970). Chem. Commun. pp. 30-31.
Canich, J. A. M., Cotton, F. A., Daniels, L. M. \& Lewis, D. B. (1987). Inorg. Chem. 26, 4046-4050.

Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.

Acta Cryst. (1990). C46, 1624-1627

Structures of Two Niobium(IV) Complexes: $\left[\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}\right]_{2}\left[\mathrm{NbCl}_{6}\right]$ and $\left.\left[\mathrm{P}_{(}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{H}\right] \mathbf{N b C l} 5\left\{\mathrm{P}_{\mathbf{2}}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right\}\right]$

By F. Albert Cotton,* Michael P. Diebold and Wieslaw J. Roth
Department of Chemistry and Laboratory for Molecular Structure and Bonding, Texas A\&M University, College Station, TX 77843, USA

(Received 7 July 1989; accepted 8 December 1989)

Abstract

Bis(tetraethylammonium) hexachloroniobate(IV) $\quad M_{r}=566 \cdot 13, \quad$ monoclinic, $\quad C 2 / c$, $a=14.006$ (2),$\quad b=14.366$ (4),$\quad c=13 \cdot 206$ (3) \AA, $\beta=90.67(2)^{\circ}, \quad V=2657(2) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.415 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.7107 \AA, \mu=9.12 \mathrm{~cm}^{-1}$, $F(000)=293, \quad T=295 \mathrm{~K}, \quad R=0.055$ for 1184 observed reflections. The independent $\mathrm{Nb}-\mathrm{Cl}$ distances and the average value are 2.413 (2), 2.422 (2), 2.393 (2) and 2.409 (9) \AA. The $\mathrm{Cl}-\mathrm{Nb}-\mathrm{Cl}$ angles average 90° by symmetry and range from 89.36 (8) to $90.78(8)^{\circ}$. Dimethylphenylphosphonium penta-

[^0]chloro(dimethylphenylphosphine)niobate(IV), $\quad M_{r}=$ 547.48, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=12 \cdot 830$ (3), $b=$ 13.633 (6), $c=13.021$ (5) $\AA, V=2277$ (2) $\AA^{3}, Z=4$, $D_{x}=1.597 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.7107 \AA, \quad \mu=$ $12.33 \mathrm{~cm}^{-1}, F(000)=275, T=295 \mathrm{~K}, R=0.0546$ for 1257 observed reflections. The quasi-octahedral anion has an $\mathrm{Nb}-\mathrm{P}$ distance of $2.673(5) \AA$, an $\mathrm{Nb}-\mathrm{Cl}$ distance trans to P of $2.405(5) \AA$ and cis $\mathrm{Nb}-\mathrm{Cl}$ distances of $2 \cdot 366$ (10), $2 \cdot 362$ (10), $2 \cdot 360$ (10) and $2 \cdot 394(10) \AA$, which give an average of $2 \cdot 363$ (2) \AA, excluding the last one which is affected by hydrogen bonding. Thus, there is a trans influence from the phosphine ligand of 0.042 (5) \AA.
© 1990 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

